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SUMMARY

The full adaptive multigrid method is based on the tri-tree grid generator. The solution of the Navier–Stokes
equations is first found for a low Reynolds number. The velocity boundary conditions are then increased and the
grid is adapted to the scaled solution. The scaled solution is then used as a start vector for the multigrid iterations.
During the multigrid iterations the grid is first recoarsed a specified number of grid levels. The solution of the
Navier–Stokes equations with the multigrid residual as right-hand side is smoothed in a fixed number of Newton
iterations. The linear equation system in the Newton algorithm is solved iteratively by CGSTAB preconditioned
by ILU factorization with coupled node fill-in. The full adaptive multigrid algorithm is demonstrated for cavity
flow. # 1997 by John Wiley & Sons, Ltd. Int. j. numer. methods fluids 24: 1037–1047, 1997.
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1. INTRODUCTION

Kallinderis1 has developed a method for generating adaptive hybrid prismatic=tetradhedral grids
where the values of velocity differences and gradients across cell edges are monitored in order to
divide=delete grid cells for inviscid transonic flow. The grid generation and method uses an oct-tree
as superior tree structure and the grid is constructed from triangles in 2D and tetrahedra and prisms in
3D. The rules for triangle and tetrahedron division are similar to those presented in Wille2.

Mavriplis and Martinelli3 have investigated compressible turbulent flow by a multigrid method.
They use non-structured, non-nested coarse and fine meshes in obtaining their solutions. The transfer
of variables, residuals and corrections back and forth between various meshes is carried out using
linear interpolation. The patterns for interpolating between non-nested unstructured meshes are
determined in a preprocessing stage using an efficient search algorithm.

Bai et al.4 have applied a multigrid method for predicting periodically fully developed flow. In
their multigrid method they use four levels of regular conforming grids. The full multigrid method is
implemented in finite volumes and uses a pressure correction scheme as smoother.

In a previous work2 a triangular tree structure based on the tri-tree has been presented. In the
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author’s opinion the triangular tri-tree structure has advantages compared with the oct-tree structure.
One advantage is that it is simpler to construct a triangular finite element grid from a triangular tri-
tree structure.

In the full adaptive multigrid algorithm the tri-tree elements are refined or recoarsed by inspection
of the Reynolds number of each tri-tree element.5–7 If the Reynolds number of a tri-tree element
exceeds a limit, the tri-tree element is refined. If the Reynolds number of tri-tree element is below the
same limit and if no tri-tree elements with Reynolds number higher than the limit occur, a
recoarsement will take place.

The tri-tree grid generation algorithm is able to generate both grids adapted to the solution and a
hierarchy of grids. In the transition between the grids in the hierarchy the restriction of node variables
is performed by simply using the function values for common nodes. In the projection of node
variables the function values for common nodes are transferred directly and the function values for
new nodes are found by linear interpolation.

The smoothing algorithm of the solution between grids consists of a fixed number of Newton
iterations, where the update of the non-linear solution is found by solving the linearized equation
system by preconditioned CGSTAB.8

2. EQUATIONS

The non-linear Navier–Stokes equations are given by

ÿmH
2v � rv ? Hv � Hp � 0 in O; �1�

ÿH ? v � 0 in O; �2�

wherev is the velocity vector,p is the pressure andm is the viscosity coefficient. The first equation is
the equation of motion which contains a diffusion and a pressure gradient term. The second equation
is the equation of continuity. A minus sign is introduced in the continuity equation in order to obtain
the same sign for the pressure gradient as for the continuity equation in the finite element formulation.
In the finite element formulation the velocities are approximated by quadratic basis functions and the
pressure is approximated by linear basis functions on each element.9 Denote quadratic polynomials
Ni and linear polynomialsLi. Then by the Galerkin residual method and integration by parts the
second-order finite element formulation of the Navier–Stokes equation system becomes
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There are several methods to linearize this equation system. Usual linearization techniques involve
the computation of gradients or approximate gradients as in the Newton method or steepest decent
methods. The Newton linearization method is a global method of linearization.

3. NEWTON LINEARIZATION

The Navier–Stokes equations have one non-linear term, the convective acceleration, which requires a
non-linear iterative solution procedure. The non-linear algorithm chosen as the Newton method,
which is known to have a second-order convergence rate. The Navier–Stokes equations (3) will then
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have to be differentiated with respect to the unknowns and the linear equation system which has to be
solved at each Newton step is
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where the matrix and the right-hand side are given by
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If the initial solutionv0 andp0 is chosen close enough to the final solution, convergence of the non-
linear equation system is guaranteed. The solution is then updated at each Newton step by the
correction found by solving (5).

4. ADAPTIVE LINEARIZATION

An alternative or supplement to Newton linearization of the equation system is local grid adaptation
to the solution, which will also contribute to the linearization of the equation system. From analytic
integrations5 the following formula is obtained:

�

O

rNiv ? HvdO
�

O

mHNi ? HvdO
�

a�v�l
b�v�

: �8�

In the above formula,a�v� andb�v� are functions of the velocities inside the element only and are
independent of the element size. The lengthl is some characteristic length of the element. The
formulae show that the magnitude of the matrix coefficient of the convection can be reduced
arbitrarily by local refinements compared with the diffusion coefficient in the implicit equation
system. The above relation is valid in both two and three dimensions and for first- and second-order
polynomial approximations of the Navier–Stokes equations. By reducing the element size where the
convection is large, the equation system becomes more and more linear and symmetric. Provided that
the local element size is reduced sufficiently, this implicit adaptive linearization will for many
Navier–Stokes applications appear to be sufficient and satisfactory.
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5. MULTIGRID ALGORITHM

The Navier–Stokes equations (5) can be expressed as an equation systemf�x� � 0, where
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� �
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� �
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� �

: �9�

The functiona denotes the assembly of element vectors into a global vector.fv andfp are velocity
and pressure equations assembled from the element velocity equation vectorFv and pressure equation
vectorFp. The global velocity,xv, and pressure,xp, vectors are assembled fromv andp respectively.

With the notation defined above, the non-linear Navier–Stokes multigrid algorithm10 is defined as
follows:

void Multigrid()
f

bN � 0, choose�xN
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void Smooth�x; �x; f; b�
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g
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The functionRk denotes the restriction of grid variables from a finer to a coarser grid. The restriction
function Rk is a filter which uses the function values in each node in the fine grid for the function
values of the nodes present in the coarse grid. The functionPk is the projection of function values
from the coarse grid to the fine grid. The function values for nodes in the fine grid are the same as in
the coarse grid for common nodes. For nodes present in the fine grid but not in the coarse grid, linear
interpolation is applied to obtain function values for these nodes. The new nodes in the fine grid are
always located at the midpoint of a side in a tri-tree element. The function value at the midpoint is
therefore simply the average value for the endpoints of the side.
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The smoothing algorithmSmooth�x; �x; f;b� returns a solution vectorx which is closer to the
solution of the equation systemf�x� � b than is the start vector�x. The smoothing algorithm consists
of a fixed number of Newton iterations by solving the linear equation systemHf�xn�Dxn �

ÿ�f�xn� ÿ b�. This equation system is solved iteratively by the iterative equation solver CGSTAB
preconditioned by coupled node fill-in ILU factorization.8

The most time-consuming parts of the multigrid algorithm are the computations of the vectorf�x�
and the matrixHf�xn�.

6. GRID ADAPTION

The Reynolds number for fluid flow is usually defined as

Re � rUbd=m; �10�

wherer is the density andm the viscosity of the fluid. The velocityUb and the lengthd are some
characteristic velocity and diameter in the flow geometry. For flow in a straight tube,Ub is the mean
inlet velocity andd is the diameter. For more complex geometries it is not possible to use a single
number to characterize the flow conditions. The element Reynolds number is defined as
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where N c
i is the basis function evaluated at the geometrical centre. The refinements and

recoarsements of elements are decided on the basis of the element Reynolds number, which is
calculated from the nodal values and weighted with the basis function evaluated at the geometrical
centre. The size of the element Reynolds numberRee indicates the degree of non-linearity in the
equation system. By reducing the element size by refinements, the magnitude of the non-linear
coefficients in the equation matrix will also decrease.

Ree > EA: �12�

Before the finite element grid is adapted to the previous solution of lower Reynolds number, the
solution at all nodes is scaled byUn

b =Uo
b , the ratio between the new and the old velocity boundary

condition. The scaled solution is then projected from the finite element grid to the tri-tree grid. The
element Reynolds number is computed for the tri-tree elements. First the tri-tree elements are
recoarsed. During recoarsing, the element Reynolds number of the tri-tree element above the terminal
element in the tri-tree is computed. If the element Reynolds numberRee of this tri-tree element is
below the adaption limitedEA, this tri-tree element is made terminal and the four leaf elements at the
finer adaption levels are discarded. The recoarsement algorithm starts from the termina leaves of the
tri-tree and transverses towards the root of the tri-tree. Owing to the tri-tree hierarchic tree structure,
the recoarsement algorithm becomes recursive. At the end of the recoarsement procedure of the tri-
tree contains elements with element Reynolds numbers just below the adaption limitEA and elements
with element Reynolds numbers above the adaption limit which have not been recoarsed. At this
stage no elements in the tri-tree can be recoarsed without introducing a new tri-tree element with
element Reynolds number above the adaption limit. When the recoarsement algorithm is finished, the
refinements are performed. The tri-tree is then traversed from the root towards the leaves. The
refinements will then be recursive. When the element Reynolds number is above the refinement limit,
the tri-tree element is refined into four new tri-tree elements. The element Reynolds number of these
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four elements will be computed later in the refinement algorithm and they will be refined later if their
element Reynolds number is above the refinement limitEA.

7. MULTIGRID GENERATION

The generation of grids at different multigrid levels begin with the grid which is adapted to the scaled
solution. The recoarsements of the grid are based on the tri-tree grid. The tri-tree elements are
traversed from the root towards the terminal elements of the tri-tree. For each terminal tri-tree
element the parent element is investigated. When the parent tri-tree element has children which are
terminals and at the same level of refinement, the child tri-tree elements are discarded and the parent
tri-tree element is made a terminal tri-tree element. During the recoarsement procedure, only those
tri-tree elements which have the same level of refinement and belong to the same parent tri-tree
element are allowed to be recoarsed. There is only one recoarsement per grid level so that a parent tri-
tree element will be the terminal element for the multigrid level.

Figure 1 shows three multigrid levels. The tri-tree elements are shown to the left and the
corresponding finite elements are shown to the right. The recoarsements are first applied to the tri-tree
grid which forms the basis for the finite element grid. The initial tri-tree and finite element grids are
shown at the top of Figure 1. The tri-tree elements are then recoarsed once and the resulting tri-tree
and finite element grids are shown in the middle of Figure 1. The tri-tree and finite element grids after
another recoarsement are shown at the bottom of the figure. The finite element grids generated in this
way are used for both the fine-to-coarse and the coarse-to-fine transition. The grids involved in the
computations are generated when they are needed in the solution algorithm. The CPU time for
generating the grids is approximately 10% of the CPU time for solving the equations.11 The most
time-consuming part of the grid adaption algorithm is the computation of the element Reynolds
number.

The multigrid solution algorithm consists of several iterative operations before a final solution is
obtained. At present the most efficient way seems to be as follows:

Solve equation system for low velocities on a coarse grid
Repeat

Increase the boundary velocity and scale the solution correspondingly
Compute theRee for each element using the scaled solution
Recoarse the grid whileRee < EA for all elements
Refine the grid untilRee < EA for all elements
Project the coarse solution to the fine grid by linear interpolation
Repeat

Smooth the solution using the interpolated solution as start vector
Recoarse the grid

Until Coarse grid level
Repeat

Refine the grid
Smooth the solution using the interpolated solution as start vector

Until Fine grid level
Until convergence at selected Reynolds number

8. CONVERGENCE CRITERIA

The tri-tree multigrid solver consists of three iterative algorithms inside each other. The inner
iterative algorithm is CGSTAB, the linear equation solver. For each Newton iteration a set of linear
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equations is solved. The iterative Newton algorithm is performed for each grid level, which is the
outer level of iterations. The three convergence criteria used are

kd
Lxk

vk

Ub
< EL

kd
Nxk

vk

Ub
< EN;

kd
Gxk

vk

Ub
< EG; �13�

whereUb is the velocity boundary condition,dLxv is the update of the velocity solution in the linear
equation solver,dNxv is the velocity update of the solution in the Newton iterations andd

Gxk
v is the

velocity difference between the projected start vector and the velocity solution at grid levelk. EL is
the linear,EN is the non-linear andEG is the grid convergence criterion.

9. NUMERICAL EXPERIMENT

The adaptive full multigrid method is tested for driven cavity flow.7 The solution is found for the
Reynolds numbers 200, 400, 600, 800, 1000 and 1200. The multigrid path and the adaptive Newton
path are shown in Figure 2. In the multigrid cycles, three grids are applied. The Reynolds number is

Figure 1. Tri-tree elements (left) and finite elements (right) for arbitrary multigrid cycle. The initial tri-tree and finite elements
are shown at the top. The first level of recoarsements is shown in the middle and the second level of recoarsements is shown at

the bottom
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Figure 2. Multigrid path (left) and adaptive Newton path (right). Each multigrid cycle consists of three grids

Figure 3. Three multigrid levels for Reynolds numbers 200 (left) and 400 (right). The initial level in each multigrid cycle is
obtained by adaption of the grid to the solution
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increased by scaling the solution with the relative increase in boundary velocity condition. The grid is
then adapted to the scaled solution. The adaption limitEA is 1�0. The adaption limit ensures that all
element Reynolds numbers initially are less than 1�0. The scaled solution is used as start vector in the
multigrid algorithm. The linear convergence criterion isEL � 0�001 and the number of Newton
iterations is fixed at two in the smoothing algorithm at each grid level. The multigrid cycles consists
of three multigrid levels at each Reynolds number as shown in Figures 3–5. In the adaptive Newton
algorithm the grids at the top of these figures are applied for the corresponding Reynolds number.

The multigrid algorithm is compared with the Newton method with five non-linear iterations. The
Newton method is applied to solve the equation system for each Reynolds number using the scaled
solution from the lower Reynolds number as start vector. The results of these comparisons are shown
in Table I. The table shows that for all the Reynolds numbers investigated, the adaptive Newton
method with five iterations is both faster and achieves greater accuracy than the multigrid method.

10. DISCUSSION

In the present work a new adaptive full multigrid finite element method has been developed. For a
three-level multigrid cycle the multigrid method has been tested and compared with solving the

Figure 4. Three multigrid levels for Reynolds numbers 600 (left) and 800 (right). The initial level in each multigrid cycle is
obtained by adaption of the grid to the solution
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Figure 5. Three multigrid levels for Reynolds numbers 1000 (left) and 1200 (right). The initial level in each multigrid cycle is
obtained by adaption of the grid to the solution

Table I. Reynolds numbers, CPU times and relative errors for
adaptive Newton method and multigrid method. The times are
given in seconds and include both grid generation and

computations of the solution of the equation system

Adaptive Newton Multigrid

Re Time ErrorEM Time ErrorEN

200 33.72 0.0024 48.46 0.0506
400 223.14 0.0028 307.81 0.0574
600 516.27 0.0124 753.83 0.0710
800 878.62 0.0083 1312.89 0.0597

1000 1494.82 0.0072 2148.64 0.0517
1200 2139.57 0.0476 3034.14 0.0289
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Navier–Stokes equations with the adaptive Newton method. The results of these tests are that with the
present smoothing and multigrid algorithms the adaptive Newton method is faster than the multigrid
method. The multigrid algorithm is applied to the non-linear equation system. There are several
reasons for the relatively slow convergence rate of the multigrid algorithm. One is that the start vector
of the multigrid cycle is not close enough to the final solution. Another reason might be the high
efficiency of the ILU preconditioner with coupled node fill-in.

By inspection of the numerical part of the adaptive multigrid algorithm, the functionf�x� is
evaluated twice in going from fine to coarse grid and once in going from coarse to fine grid. Inside the
smoothing algorithm the vectorf�x� and the matrixHf�x� are evaluated once for each adaptive
Newton iteration. The computationals of these non-linear vectors and matrices are expensive owing
to the large computational time. However, the tri-tree grid generation algorithm reveals advantageous
properties both concerning the CPU time and in providing adequate finite element grids.11 Thus less
expensive smoothing and more efficient numerical multigrid transition algorithms will be sought.
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